Lecture No. 15

2-D Basis Functions — Triangular Elements

Triangular elements are often used in the FEM since they very easily permit irregularly shaped

domains to be represented and mesh sizes to be changed (se Figure E15.1)

o Definition of a Unit Element;
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Define an oblique coordinate system &, &,.
Number nodes in an anti-clockwise fashion, the side opposite of node i is designated side i.
Make the obligue coordinates dimensionless with respect to side length (let each side vary

between 0 and 1).



Therefore let:
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« Transformation from Cartesian to Oblique coordinates for any point:
p(x,y) = P(§1,$2)
x = X3+ (X1 - X3)& + (X2 — X3)é,
y=Y3+({Y1-Y3)& + (Y2 -Y3)E,
where (X1,Y1), (X2,Y2),(X3,Y3) are the global coordinates of the 3 corner nodes.
The transformation can also be expressed as:
x=§X1+6X2+ (1 - & —&,)X3
y=§&Y1+&Y2+(1—-§ —&,)Y3

o Inverting this we have:
1
$1 = oY (247 + byx + a1y)

1
$p = ﬂ(ZA(z) + byx + ayy)

where
a; =X3-X2 a,=X1-X3
by =Y2-Y3 b,=Y3-Y1
249 = X2-Y3 —-X3-Y2
249 =X3-Y1—-X1-Y2
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o We note thatalongside 3, & +&, =1

Let’s now introduce a third coordinate, &5, such that &; = 0 along side 3.

/>

(0,1,0)

(o,0,1)y Fa=P (1,0,0)
Thus now we describe each point by coordinate triplet (¢4, &,, £3). These dimensionless

coordinates can be interpreted as area ratios:

_area(32P) A4
V" area(321) A

where A, is defined as the area bounded by side 1 and point P.




Hence we have 3 area coordinates of which only two are independent

A, A, Ay A
=—=1
ATaATa"3

$1+6,+63=1
$3=1-8—¢&;

Substituting for &; and &, we find an equation of the form:

1
$3 = ﬂ(ZAg + b3x + aszy)

A = A— A2 = A3
a3=—a1—a2

b3 = —b; — b,



Thus in general

« Computing derivatives for transformed coordinates:

af 0€1+ af 5€z+ df 0¢3
0F, dx | 0%, 0x  0&; Ox

=

Gt = AZ bi 3¢

0
a{f(fp $2) 53)} —

Similarly:

3
? N 06 _

Higher order derivatives are found by repeating the application of the above formulae.



Linear Triangle

The simplest 2-D expansion is obtained for a 3 node triangular element. Let’s use the

elemental expansions:

$1=¢1 X

¢ = ¢

¢3 =<3

at node 1 ¢, =1 , =0 3 =0

at node 2 ¢, =0 P, =1 ¢$3 =0 Y (voo)
at node 3 ¢, =0 ¢, =0 ¢; =1

Thus these functions satisfy the requirements for FE

interpolating functions. Thus for this 3 node element:

¢ = [51»52153]

Thus any variable is represented within the element as:
-u](-n)_

u = pu™ where u®™ = [4,{™

™,



Thus

where

and

Thus

— ) =
(gu®),
_ ¢, 9¢, 653]
— dx  0x 0x
0 1 0
ﬁ {bl $1 + b,
0x 0&, 0
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ox 24
Similarly:
0% _ by
dx 24
083 _ b3
ox 24

™

g2+b3

1
bx =75+ [b1» by, bs]
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Similarly
1
by =74
Thus derivatives are constants over the element.

[alr a, a3]

« Notes:

1. The triangular &; coordinate system and formulation is more convenient since u is directly
expressed as a function of the nodal unknowns. It is suitable for both linear and higher order
elements.

2. Variation of the function on both the element boundaries and the element interior is linear

(no quadratic terms like the bi-linear quadrilateral).

At any point within the element with coordinates (&4, &5, £3), we have:

u= fﬂlgn) + fzugn) + €3u§")



Quadratic Triangular Element

The quadratic basis functions are generated by assuming a general 2" order approximation. In

local coordinates (recall that only 2 are independent):
¢ = a; + bi&y + ¢;éy + di&F + e + fi61,
6 unknowns — 6 nodes — 6 constraints — 6 interpolating functions.

Constraints:

L (1 Q=]
¢i(n0de]) — (O i :/:j

. ‘53:'




Applying the constraints we can derive the following 6 functions which in the (&, &,, &3)

coordinates are:
¢ =28 - &
P2 = 46161
b3 =285 — &,
Ps = 45283
$s =285 — &3
Pe = 4183

These ¢;’s give a truly quadratic variation over a triangular element (Recall that the bi-
quadratic quadrilateral resulted in 4™ order terms in the interior).

Cubic Triangular Element

Start with a cubic polynomial expansion:

¢; = a; + bi&y + ;& + diéf + eé5 + fi&18, + 9878, + WéEES +piéS + qiés

10 coefficients — 10 nodes — 10 sets of constraints — 10 interpolating functions



« We note that all the elements discussed so far, both triangles and quadrilaterals, have only
C° functional continuity.

« Pascal’s triangle can also be used to define the generic form of the interpolating

polynomials and the form and location of the nodes for triangular elements.
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Integration Rules

The triangular coordinate system and formulation (i.e &, &,, &; coordinates) also permits the
use of very simple integration rules.

Analytical Formulae

« Evaluation of an integral over a 2-D triangular element

ik i1l k!
ﬂgl"cz"%dA B (i+j+k+2)!2A

where A = area of the element



o For 1-D elements or boundary evaluations of a 2-D element (line integrals)

'ljl
f 16048 = G

where L = length of the line segment

e For 3-D elements

jlk!l!
jﬂfl"cz"%f‘* (l+]+k+l+3)'6v



Quadrature Formulae for 2-D triangles (over the unit element)

n Exact for order J | Quadrature location w; comment
polynomial $1,6283=1—-¢1— &
1 |linear 1 111 1 evaluate at
3 3 3 2 centroid
2  |quadratic 1 11 0 1 points are
2 2 % 1 1 mid-points of
3 0 2 2 1 sides
1 0 1
2 2
3 |cubic 1 111 9
3 3 3 32
2 3 1 1 25
5 5 5 96
3 1 3 1 25
5 5 5 9
4 113 25
5 5 5 96
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